

Nutrient and sediment inputs change soil structure and biogeochemistry in floodplain ecosystems: a cross-study synthesis

Greg Noe¹, Cliff Hupp¹, Ed Schenk², Ken Krauss³, Sara McMillan⁴, Dan Kroes⁵, Scott Ensign⁶, Jaimie Gillespie¹, Kristin Wolf⁷, and Changwoo Ahn⁸

U.S. Department of the Interior U.S. Geological Survey

Conceptual models of floodplain ecosystems: ecogeomorphology

Floodplains are dynamic systems, structured by both channel interactions and internal processes

How does hydrologic connectivity change floodplain sediment and nutrient fluxes and soils? How do floodplains typically behave, and how does it change across landscapes? What are geomorphic-biogeochemical interactions and their consequences?

(Noe 2013 Treatise of Geomorphology, modified from NRC 2002 Riparian Areas)

Synthesize measurements of inputs and internal cycling of sediment and nutrients made across our multiple studies of floodplains

- Contrast rates among landscape settings and ID watershed controls
- Relate nutrient and sediment inputs to soil characteristics and biogeochemical rates
- Identify typical rates of autochthonous vs. allochthonous C sedimentation rates
- \rightarrow Insight into consequences of hydrologic connectivity for wetlands

Common measurement techniques across all studies facilitate synthesis

• Input rates to floodplains

Sediment: accretion, mass accumulation, C, N, P mass accumulation
→ short-term artificial marker horizons (tile or feldspar)
Dissolved: inorganic N and P
→ ion-exchange resin bags on soil surface

Sediment and soil characteristics

 \rightarrow short-term artificial marker horizons (tile or feldspar) \rightarrow surficial (0-5 cm) cores

 Biogeochemical transformation rates Net N and P mineralization rates → modified resin cores

Input rates and sediment characteristics

Average duration = 2.4 yr

Compared to other studies: Sed fluxes typical N conc. and fluxes greater C conc. and fluxes greater P conc. and fluxes typical

Mitsch et al. 2005:

≥USGS

median NO₃-N removal = 29 g-N m⁻² yr⁻¹

	n	Mean	Median	Coefficient of
				variation
Sedimentation (g m ⁻² yr ⁻¹)	400	4629	1449	377%
Sediment deposition (cm yr-1)	173	0.70	0.52	95%
Mineral sedimentation (g m ⁻² yr ⁻¹)	263	5018	1556	406%
Organic sedimentation (g m ⁻² yr ⁻¹)	263	553	366	158%
C sedimentation (g-C m ⁻² yr ⁻¹)	398	253	168	132%
N sedimentation (g-N m ⁻² yr ⁻¹)	398	16.4	10.0	132%
P sedimentation (g-P m ⁻² yr ⁻¹)	378	3.41	1.47	193%
Organic (%)	259	21.0	15.5	72%
C (%)	389	13.7	9.9	81%
N (%)	389	0.76	0.60	67%
P (mg g⁻¹)	369	1.10	1.02	51%
NH₄⁺ input (g-N m⁻² yr⁻¹)	144	0.99	0.41	257%
NO ₃ - input (g-N m ⁻² yr ⁻¹)	144	1.73	0.57	216%
SRP input (g-P m ⁻² yr ⁻¹)	144	0.54	0.38	114%

Noe et al., manuscript in prep.

Sedimentation rates

A

Sedimentation (g m⁻² yr⁻¹)

A

в

Plots

Sites

Rivers

A

- Valley + Ridge
- **Coastal Plain**
- Oligohaline

Piedmont

TFFW

Restored/created similar to natural in same province

AB

С

AB

10 Intatio

C sedim

0.1

0.1

0.01

10 Z

N sedimentation

AB

≥USGS

Noe et al. in prep.

Sedimentation controls (nontidal floodplains only)

[25 watershed attributes considered] Explained deviance = 49% CV correlation = 0.64

N and P sedimentation: Pasture, Developed land use also important

Organic sedimentation

y-intercept = 212 g-OM m⁻² yr⁻¹ (95% CI: 171 to 253)

NAPP – decomposition = 133-200 g-OM m⁻² yr⁻¹

(Conner and Cherry 2013) , (Lockaby and Walbridge 1998)

Disconnected floodplain deposition = 165 g-OM m⁻² yr⁻¹ (Noe and Hupp 2005)

autochthonous ~ 180 g-OM m⁻² yr⁻¹, 70 g-C m⁻² yr⁻¹ allochthonous ~ 370 g-OM m⁻² yr⁻¹, 150 g-C m⁻² yr⁻¹

P mineralization controls

Boosted Regression Trees:

Deviance explained = 93% P min., 89% P turnover CV correlation = 0.81 P min., 0.80 P turnover

P min.: 60% control by material inputs, 40% by soil character. P turn.: 26% ... , 74% ...

PO₄ inputs, WFPS, and pH most important

N mineralization controls

Boosted Regression Trees:

≥USGS

Deviance explained = 49% P min., 63% P turnover CV correlation = 0.30 N min., 0.50 N turnover

N min.: 65% control by material inputs, 35% by soil character. N turn.: 62% ... , 38% ...

Sedimentation, NH₄ inputs, and pH most important

Sediment inputs stimulate denitrification

Individual studies...

Chesapeake floodplains

Korol et al. in review

Urban restored streams, Charlotte NC

McMillan and Noe 2018

Conclusions

This multi-study synthesis, comparing common measurements across a wide range of floodplains, provides comprehensive flux <u>#</u>'s and highlights the importance of ecogeomorphology:

Landscape/watershed (and reach geomorphology) controls on variation in sedimentation and N and P input fluxes can provide predictability

Hydrologic connectivity \rightarrow C, N and P inputs \rightarrow mineralization and denitrification

Dissolved inorganic nutrient inputs

Increase with watershed agriculture and development

Greater than atmospheric deposition to most wetlands

Particulate NP >>	Dissolved NP inputs
3.6 g-P m ⁻² yr ⁻¹	0.6 g-P m ⁻² yr ⁻¹
13.6 g-N m ⁻² yr ⁻¹	2.1 g-N m ⁻² yr ⁻¹

Soil N and P mineralization

P min. more variable than N min.

N turnover more variable than N min. P turnover = P min.

Created = or > Natural

